2 00 9 Lacunary hyperbolic groups
نویسنده
چکیده
We call a finitely generated group lacunary hyperbolic if one of its asymptotic cones is an R-tree. We characterize lacunary hyperbolic groups as direct limits of Gromov hyperbolic groups satisfying certain restrictions on the hyperbolicity constants and injectivity radii. Using central extensions of lacunary hyperbolic groups, we solve a problem of Gromov by constructing a group whose asymptotic cone C has countable but non-trivial fundamental group (in fact C is homeomorphic to the direct product of a tree and a circle, so π1(C) = Z). We show that the class of lacunary hyperbolic groups contains non-virtually cyclic elementary amenable groups, groups with all proper subgroups cyclic (Tarski monsters), and torsion groups. We show that Tarski monsters and torsion groups can have so-called graded small cancellation presentations, in which case we prove that all their asymptotic cones are hyperbolic and locally isometric to trees. This allows us to solve two problems of Druţu and Sapir, and a problem of Kleiner about groups with cut points in their asymptotic cones. We also construct a finitely generated group whose divergence function is not linear but is arbitrarily close to being linear. This answers a question of Behrstock.
منابع مشابه
Lacunary hyperbolic groups
We call a finitely generated group lacunary hyperbolic if one of its asymptotic cones is an R-tree. We characterize lacunary hyperbolic groups as direct limits of Gromov hyperbolic groups satisfying certain restrictions on the hyperbolicity constants and injectivity radii. Using central extensions of lacunary hyperbolic groups, we solve a problem of Gromov by constructing a group whose asymptot...
متن کاملOn the Universal Theory of Torsion and Lacunary Hyperbolic Groups
We show that the universal theory of torsion groups is strongly contained in the universal theory of finite groups. This answers a question of Dyson. We also prove that the universal theory of some natural classes of torsion groups is undecidable. Finally we observe that the universal theory of the class of hyperbolic groups is undecidable and use this observation to construct a lacunary hyperb...
متن کامل5 J an 2 00 9 THE BOREL CONJECTURE FOR HYPERBOLIC AND CAT ( 0 ) - GROUPS
We prove the Borel Conjecture for a class of groups containing word-hyperbolic groups and groups acting properly, isometrically and cocom-pactly on a finite dimensional CAT(0)-space.
متن کامل2 9 O ct 2 00 6 RELATIVE HYPERBOLICITY AND ARTIN GROUPS
This paper considers the question of relative hyperbolicity of an Artin group with regard to the geometry of its associated Deligne complex. We prove that an Artin group is weakly hyperbolic relative to its finite (or spherical) type parabolic subgroups if and only if its Deligne complex is a Gromov hyperbolic space. For a 2-dimensional Artin group the Deligne complex is Gromov hyperbolic preci...
متن کاملGroups with no coarse embeddings into hyperbolic groups
We introduce an obstruction to the existence of a coarse embedding of a given group or space into a hyperbolic group, or more generally into a hyperbolic graph of bounded degree. The condition we consider is “admitting exponentially many fat bigons”, and it is preserved by a coarse embedding between graphs with bounded degree. Groups with exponential growth and linear divergence (such as direct...
متن کامل